
OPEN SOURCE HEVC ANALYZER FOR RAPID PROTOTYPING (HARP)

Dominic Springer, Wolfgang Schnurrer, Andreas Weinlich, Andreas Heindel, Jürgen Seiler, and André Kaup

Multimedia Communications and Signal Processing

Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Cauerstr. 7, 91058 Erlangen, Germany

ABSTRACT

The design of new HEVC extensions comes with the need for

careful analysis of internal HEVC codec decisions. Several

bitstream analyzers have evolved for this purpose and pro-

vide a visualization of encoder decisions as seen from a de-

coder viewpoint. None of the existing solutions is able to

provide actual insight into the encoder and its RDO decision

process. With one exception, all solutions are closed source

and make adaption of their code to specific implementation

needs impossible. Overall, development with the HM code

base remains a time-consuming task. Here, we present the

HEVC Analyzer for Rapid Prototyping (HARP), which di-

rectly addresses the above issues and is freely available under

www.lms.lnt.de/HARP.

1. INTRODUCTION AND MOTIVATION

The new High Efficiency Video Coding (HEVC) standard,

also known as H.265, took roughly ten years to evolve from its

predecessor, H.264/AVC. With around 70,000 lines of code,

its reference implementation HM [1] requires a well-chosen

setup for designing, implementing, and debugging new ex-

tensions of the HEVC standard. Industry and research com-

munity have addressed this with several HEVC analyzers [2,

3, 4, 5], allowing a decoder-side view on bitstream internals.

While development work often takes place in the encoder

first, none of the existing solutions is able to monitor encoder

behavior, e.g. for rate-distortion optimization (RDO) analy-

sis. With the exception of [5], all solutions are closed-source

and cannot be adapted to reflect individual needs for specific

HM adaptions. Support of Linux, which builds the basis of

many research infrastructures, is rare, and export capabilities

of HM data structures are minimal or non-existent. As a re-

sult, the implementation and debugging of new HEVC exten-

sions remains time-consuming for both new and experienced

HM developers.

In this work, we present the HEVC Analyzer for Rapid

Prototyping (HARP). Its motivation lies in the simple idea

that a well-chosen development environment allows to focus

time and resources more on the design stage of HEVC exten-

sions and less on subsequent implementation and debugging

tasks. For rapid prototyping on C++ side, HARP makes heavy

use the advanced C++ libraries OpenCV [6], Qt [7], and Pick-

lingTools [8]. HARP allows to export HM data structures to

Python Dictionaries and thus Matlab-like processing, statis-

tical evaluation and plotting in native Python [9]. HARP is

licensed under GNU GPL and offers four essential features:

• Easy setup of an HEVC development environment

• Support of encoder analysis (e.g. RDO decision paths)

• C++ export of HEVC information to Python Dictionaries

• Python frontend for easy numerical processing and plotting

2. THE HARP TOOLKIT

The HARP toolkit consists of the central HARP C++ core

and Python GUI components, accompanied by a wide set of

different libraries and tools for fast prototyping. On Linux,

downloading HARP and calling one command line is suffi-

cient to create a full-fledged, fully open source HM develop-

ment environment as depicted in Fig. 1. During compilation

of HARP, Eclipse project files are automatically generated.

Imported into Eclipse, all HARP C++ core code as well as all

used C++ and Python libraries are automatically scanned and

type-indexed. In its current version 1.0, HARP is able to:

• Access CTU/CU data types (see CShow UnitsCloseup.h)

• Access PU parts and MVs (see CShow PredictionUnits.h)

• Monitor RDO decision paths (see CShow RDO.h)

• Analyze chosen PU refs (see CShow RefIndices.h)

• Analyze chosen TU sizes (see CShow TransformUnits.h)

2.1. HARP Examples

Fig. 2 uses four CTUs from sequence Cactus to demon-

strate the capabilities of the HARP C++ core with regard

to Prediction Units (PUs), PU ref indices, Transform Units

(TUs), and HM data structures. We recommend the class

CShow UnitCloseup as a starting point for new HM develop-

ers: it makes typical use of encoder/decoder data structures

and LUT-based z-scan/raster-scan indexing of atomic 4x4

HM storage units. Another example, showing HARP visu-

alization of the RDO decision tree is shown in Fig. 3a. For

the partially rotating content in CTU 343 (see Fig. 2), the

first five RDO evaluations are depicted. PU size is first full



HM (HEVC)

HARP C++ Core HARP Python GUIOpenCV

(C++ image and

matrix processing)

Qt

(C++ class library)

PicklingTools

(C++ Python 

Dictionaries)

Callgrind

(path analysis,

optimization)

CMake

(build chain

management)

Matplotlib

(publication-ready

plotting)

Numerical Python

(Numpy)

PyQtGraph

(real-time plotting)

Valgrind Dev

(linking against 

C-API) 

v

v

v

v
Eclipse IDE

(C++/Python

development)

CShow

UnitCloseup

(GPL)Extensions

HM Code Base

TApp-/TLib-

Encoder

Decoder

Common

(BSD)

CShow

PredictionUnits

(GPL)

CShow

TransformUnits

(GPL)

CShow

RDO

(GPL)

CMake Script

(GPL)

CShow

RefIndices

(GPL)

GUI Sources

(GPL)

Plot Examples

(GPL)

Dict. Examples

(GPL)

Numpy Examples

(GPL)

OPEN SOURCE HEVC ANALYZER FOR RAPID PROTOTYPING (HARP)

Fig. 1: Overview of HARP toolkit, with the HARP code base marked in blue color. Green color: C++ libraries and tools integrated into the

toolkit. Orange color: optional tools and Python libraries for rapid IDE-based development, code profiling and publication-ready plotting.

2Nx2N @ 64x64, then split to Nx2N. The second and third

predInterSearch() tests are able to approximate the rotational

motion better than the first 2Nx2N test, but still suffer from

strong prediction error and residual energy.

The analyzer can also be run in demonstration mode, tak-

ing in the results from a video stream (like a webcam) and

showing live visualizations of the encoder behavior during

HEVC compression. Fig. 3b shows a screenshot of the HARP

Python GUI, running in Live HARP Demo mode.

2.2. Processing HEVC Data in Python

The programming language Python [9] has gained significant

popularity for scientific applications. With its rising number

of specialized toolboxes, Python provides scientific tools sim-

ilar to Matlab without requiring the purchase of any licenses.

Python code is highly portable between different platforms

and runs on small embedded devices as well as on large-scale

parallel HPC clusters. We make use of PicklingTools [8] to

easily export HEVC information under C++ as Python Dictio-

naries, which can then be read in and processed efficiently in

Python. We recommend the Live HARP Demo (see Fig. 3b)

as a ready-to-use basis for interested developers.

2.3. Compiling and Installing HARP

All major Linux distributions provide package managers to

setup full-fledged development environments and library in-

stallations with a single command line. For HARP 1.0 on

Ubuntu 14.04 LTS, the following line sets up all prerequisites

for an HEVC development environment identical to Fig. 1:

sudo apt-get install build-essential libopencv-dev qt4-default

cmake valgrind libpython2.7-dev python-numpy python-scipy

python-matplotlib python-pyinotify

For full support of HARP Python GUI, we recommend a

manual installation of Eclipse CDT 4.2 (or higher) and PyQt-

Graph. We based HARP on CMake [10], a multiplatform

C/C++ build management, so that HARP can be easily com-

piled and extended with new libraries. The HARP com-

ponents were carefully chosen for platform independence,

which opens up possible ports of HARP to Mac OS or Win-

dows OS. Please note that we did not test HARP on Windows

since CMake, OpenCV, Qt, Python, PyQtGraph, and Mat-

plotlib are required to be installed by hand with appropriate

PATH configuration (testing, documentation, and screenshots

of these steps on Windows are very welcome).

a) b) c)

Fig. 2: HARP visualization during HM-14.0 encoding of POC4 in sequence Cactus. a) Output of C++ class CShow PredictionUnits (red:

intra, blue: inter, green: merge, light green: skip, red arrows: MVs). b) Left to right, top to bottom: original image patch, magnified output of

classes CShow PredictionUnits, CShow RefIndices and CShow TransformUnits. c) Magnified output of class CShow UnitCloseup.



a) b)

Fig. 3: a) HARP visualization example of the first two RDO tests performed on CTU 343 (export of all tests possible). After HM’s predIn-

terSearch() found the best PU MV (yellow), encodeResAndCalcRdInterCU() calculates the corresponding residual (green). b) Live HARP

Demo for ICIP 2014 Show&Tell, graphs demonstrate how motion vectors and mode info can be numerically processed and plotted in Python.

3. CONTRIBUTIONS ARE WELCOME!

The architectural choices in Fig. 1 reflect our need for fast

access to the HM codebase: rapid prototyping is essential for

early stages of scientific research. If you plan to modify the

HEVC encoder and decoder code bases, the HARP toolkit is

probably the right choice. For a first start with HEVC without

any knowledge about the standard, we recommend the open

source Gitl HEVC bitstream analyzer [5]. We put all sources

under GPL license (with the exception of changes to HM core

libraries, which remain BSD) in order to create an incentive

for interested developers to use and extend the HARP code

base. Our HEVC research is ongoing, so please contribute

back interesting new code sections! Among a list of possible

contributions, these three ideas stand out:

• C-API for HARP to make its C++ code linkable from C

• Usage of this C-API for HARP integration into VP9 [11]

• MinGW build and documentation of HARP for Windows

4. CONCLUSION

We presented HARP, a GNU GPL licensed HEVC analyzer

toolkit for rapid prototyping (www.lms.lnt.de/HARP). While

existing HEVC analyzers are restricted to decoder side and,

with one exception [5], are closed source only, HARP allows

detailed analysis like encoder-side RDO behavior or decoder-

side CU mode visualization and is freely adaptable to specific

needs. HARP’s main focus is to assist future research on

new HEVC extensions by offering a complete development

environment, consisting of useful libraries, essential build

and visualization tools, Python toolboxes, and ready-to-use

Eclipse IDE project files. We encourage interested developers

to freely use and extend our toolkit and contribute interesting

new code sections back to the HARP code base.

5. REFERENCES

[1] ITU/ISO/IEC, “HEVC Test Model HM-14.0,”

www.hevc.hhi.fraunhofer.de.

[2] Codecian, “CodecVisa: HEVC and VP9 bitstream ana-

lyzer,” www.codecian.com.

[3] Solveigmm, “Zond 265: HEVC bitstream analyzer,”

http://www.solveigmm.com/en/products/zond.

[4] Elecard, “Elecard HEVC bitstream analyzer,”

www.elecard.com.

[5] Sun Yat-sen University, “Gitl HEVC bitstream ana-

lyzer,” www.github.com/lheric/GitlHEVCAnalyzer.

[6] OpenCV Dev Team, “OpenCV: image processing li-

brary,” www.opencv.org.

[7] Qt Dev Team, “Qt4 library,” www.qt-project.org.

[8] R. Saunders, “Complex software systems in legacy and

modern environments: A case study of the picklingtools

library,” in Proc. HICSS, Kauai, Hawaii, USA, 2010, pp.

1–10, source available under www.picklingtools.com.

[9] Python Software Foundation, “Python programming

language,” www.python.org.

[10] CMake Dev Team, “CMake: cross-platform, open-

source build system,” www.cmake.org.

[11] D. Mukherjee, J. Bankoski, A Grange, H. Jingning,

J. Koleszar, P. Wilkins, X. Yaowu, and R. Bultje, “The

latest open-source video codec VP9 - an overview and

preliminary results,” in Proc. PCS, San Jose, USA, Dec

2013, pp. 390–393.


